Além do Sistema Solar

A busca por planetas semelhantes à Terra é uma das grandes ambições da ciência moderna. Ao longo de décadas, embora, pesquisas, observações e missões espaciais avançam nesse conhecimento a passos largos, ainda assim há muito mistério lá fora. A Universidade Federal do Rio Grande do Norte (UFRN) tem importante participação nessa corrida, sendo responsável pela descoberta de vários exoplanetas e participação em missões espaciais. Porém, um novo equipamento construído com apoio da UFRN amplia a precisão para estudos sobre o que acontece fora do sistema solar e implanta um novo marco no campo da Exoplanetologia, ciência que estuda os exoplanetas.

Isso é possível graças ao desenvolvimento de um Laser Frequency Combs (LFC) – Pente de Frequência Laser – para aplicações astronômicas, financiado por um consórcio formado pela UFRN, Instituto de Astrofísica de Canárias (Espanha) e pelo European Southern Observatory (com sede na Alemanha). Os primeiros resultados obtidos a partir desse novo equipamento, publicados agora na Nature Astronomy, com o título “Um teste crucial para calibração de espectrógrafos astronômicos com pentes de frequência”, representam um marco histórico para a ciência.

Assinado por uma equipe de 26 pesquisadores de várias partes do mundo, entre eles José Renan de Medeiros, Bruno Leonardo Canto Martins e Izan de Castro Leão, do Departamento de Física Teórica e Experimental (DFTE/UFRN), membros do Núcleo de Astronomia Observacional e Instrumental da UFRN, o estudo é fruto de um trabalho que já dura nove anos.

Professor José Renan mostra modelo semelhante ao equipamento desenvolvido com a colaboração da UFRN – Wallacy Medeiros

O LFC deriva da pesquisa sobre espectroscopia de alta precisão de Theodor Hänsch, ganhador do Prêmio Nobel de Física de 2005 – um dos autores desse novo artigo –, que, na prática, constitui um espectro de radiação gerado por um laser. A projeção forma uma série de linhas finas, discretas e igualmente espaçadas, lembrando a imagem de um pente de cabelo. A ideia central para as aplicações LFC em astronomia é usá-lo como uma espécie de régua, com a qual você pode medir espectros astronômicos com precisão sem precedentes. Em termos simples, é como a ciência mede a radiação eletromagnética, incluindo luz visível que irradia de estrelas e de outros corpos celestes.

Segundo o professor Renan, o método mais usado para encontrar exoplanetas atualmente é medindo a variação na velocidade com que uma estrela se afasta ou se aproxima de nós, em relação a sua posição, chamado na Física de efeito “Doppler” da luz. Na realidade, tal fato acontece, porque quando um objeto menor (por exemplo, um planeta) orbita um objeto maior (uma estrela), pode produzir mudanças de posição e velocidade deste último. Esse nome é uma homenagem a Johann Christian Doppler, quem primeiro escreve, em 1842, sobre o fenômeno físico observado nas ondas quando emitidas ou refletidas por um objeto que em movimento com relação a quem o observa. Essas variações são causadas pela interação gravitacional entre a própria estrela e os planetas em sua órbita. Com base nesses dados, os cientistas obtêm informações sobre a presença e as características dos planetas, mesmo sem poder observá-los diretamente.

LFC em ação. Dispositivo torna possível detectar planetas semelhantes à Terra fora do nosso sistema solar

O dispositivo LFC foi instalado recentemente no Observatório La Silla, no Chile. Agora faz parte do espectrômetro HARPS (sigla em inglês para Buscador de Planetas em Velocidade Radial de Alta Precisão), um dos instrumentos fundamentais do Observatório Europeu do Sul (ESO), considerado o principal ‘caçador de planetas’ baseado na Terra. “A adição de um LFC ao espectrômetro HARPS representa um avanço significativo na busca de novos planetas, pois permite detectar frequências e amplitudes mais baixas de oscilações em torno das estrelas, mais semelhantes à frequência gerada pela Terra”, reforça Renan.

A revolução desse novo LFC é a sua precisão com estabilidade de 1 centímetro por segundo, 100% mais eficiente que qualquer outro equipamento testado. Segundo os cientistas, o LFC reduz muitas dificuldades na caracterização de espectros remotos, mostrando-se um calibrador absoluto que está diretamente ligado à Unidade de Tempo do Sistema Internacional de Unidades (SI) através de um relógio atômico.

“Mostramos o poder do método medindo com precisão a velocidade absoluta do Doppler do planeta anão Ceres através de sua luz solar refletida. Observar cada vez mais espectros de resolução e definir desvios de frequência cada vez menores também nos permite medir possíveis variações nas constantes físicas que estariam ligadas à expansão do universo”, reforça o professor Renan.

De acordo com ele, além de procurar novos planetas, o LFC tem aplicações também na Cosmologia, com uma ampla gama de sondagens da distribuição de matéria escura em nossa galáxia, medindo a aceleração da expansão cósmica em tempo real, possivelmente encontrando variações nas constantes fundamentais em escalas cósmicas. 

Origem e desenvolvimento do projeto

A equipe de engenheiros e cientistas da LFC participou da fase de testes, no ESO, La Silla – Cedida

O laser, sigla em inglês que significa “amplificação da luz por emissão estimulada de radiação”, sem a qual não poderíamos viver hoje com a mesma qualidade de vida, foi descoberto há 60 anos pelo físico americano Theodore Maiman. Esse instrumento se tornou fundamental no desenvolvimento da ciência, da tecnologia e da indústria por apresentar características especiais como a coerência, a direcionalidade, a monocromia e a polarização. “Basicamente o laser é um feixe de luz extremamente organizado, focalizado e puro”, explica Renan Medeiros.

São inúmeras as possibilidades de aplicações do laser em diversas áreas, seja da indústria, da medicina ou mesmo dentro de supermercados em leitores de códigos de barra. Entretanto, apesar do seu papel fundamental para a realização de medidas ultra precisas de frequências, tempo e espaço, os esforços para o desenvolvimento e construção de Pentes de Frequências Laser aplicados à Astronomia só começaram em 2011, graças à perspectiva de uma revolução imediata na Exoplanetologia.

Fazer isso sozinho era impossível devido ao alto custo e necessidade de tecnologias nesse campo ainda incipientes no País. Por isso, foi criado o consórcio internacional, no qual a UFRN faz parte através de seu Departamento de Física, além do Instituto de Astrofísica de Canárias (Espanha) e do European Southern Observatory (Alemanha). Desde então, esse grupo começou a trabalhar conjuntamente com pesquisadores do Instituto Max Planck de Ótica Quântica e da Menlo Systems (Alemanha) para o desenvolvimento do novo LFC.

O primeiro teste do equipamento aconteceu em abril de 2015. O trabalho permitiu precisões inesperadas em medidas de parâmetros físicos utilizados para diagnósticos sobre a presença de planetas em torno de outras estrelas. “Entretanto vários ajustes foram necessários até a obtenção de um instrumento estabilizado e de alta-performance, incluindo a construção de fibra-óticas específicas”, destacou Renan. “Finalmente, após nove anos de esforços, os testes finais são anunciados neste artigo, com resultados que apontam para uma efetiva revolução no campo da Exoplanetologia”, concluiu.

Um aspecto de grande relevância para as instituições financiadoras do projeto do Pente de Frequências Laser, é que, por seus esforços e contribuição financeira no desenvolvimento e construção desse instrumento, Pente de Frequências Laser, a equipe da UFRN e a do Instituto de Astrofísica de Canárias, receberam, cada uma, 60 noites de tempo garantido para observações com o telescópio de 3,60m do ESO, usando o espectrômetro HARPS com o LFC. O tempo garantido para a Equipe da UFRN está sendo dedicado, há 18 meses, para a busca por planetas pequenos parecidos com a Terra em torno de 60 estrelas já conhecidas por hospedarem um planeta do tipo de Júpiter.

Fonte: Agecom/UFRN

Sair da versão mobile